Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes

نویسندگان

  • Edith Debroas
  • Carine Ali
چکیده

Astrocytes are claimed to protect neurons against excitotoxicity by clearing glutamate from the extracellular space and rapidly converting it into glutamine. Glutamine, is then released into the extracellular medium, taken up by neurons and transformed back into glutamate which is then stored into synaptic vesicles. Glutamine synthetase (GS), the key enzyme that governs this glutamate/glutamine cycle, is known to be upregulated by glucocorticoids. In the present work we have thus studied in parallel the effects of dexamethasone on glutamine synthetase activity and NMDA-induced neuronal death in cultures derived from the brain cortex of murine embryos. We showed that dexamethasone was able to markedly enhance GS activity in cultures of astrocytes but not in near pure neuronal cultures. The pharmacological characteristics of the dexamethasone action strongly suggest that it corresponds to a typical receptor-mediated effect. We also observed that long lasting incubation (72 h) of mixed astrocyte-neuron cultures in the presence of 100 nM dexamethasone significantly reduced the toxicity of NMDA treatment. Furthermore we demonstrated that methionine sulfoximine, a selective inhibitor of GS, abolished the dexamethasone-induced increase in GS activity and also markedly potentiated NMDA toxicity. Altogether these results suggest that dexamethasone may promote neuroprotection through a stimulation of astrocyte glutamine synthetase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Transforming Growth Factor - , 8 on Murine Astrocyte Glutamine Synthetase Activity

Cytokines have been implicated in the pathogenesis of a number of brain diseases in which neurological dysfunction has been attributed to a change in amino acid neurotransmitter metabolism. In the present in vitro study, we investigated the effects ofcytokines on astrocyte glutamine synthetase (GS) activity and subsequently on N-methyl-D-asparate (NMDA) receptor-mediated neurotoxicity. Proinfla...

متن کامل

Effects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture

Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...

متن کامل

Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture.

Cyclooxygenase isozymes (COX-1 and COX-2) are found to be constitutively expressed in brain, with neuronal expression of COX-2 being rapidly induced after numerous insults, including cerebral ischemia. Because overactivation of N-methyl-D-aspartate (NMDA) receptors has been implicated in the cell loss associated with ischemia, we characterized the expression of the COX isozymes in murine mixed ...

متن کامل

Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine.

Repetitive correlated activation of pre- and postsynaptic neurons induced long-term potentiation (LTP) of synaptic transmission among hippocampal neurons grown on a layer of astrocytes (mixed cultures) but not among neurons cultured in glial conditioned medium. Supplement of D-serine, an agonist for the glycine-binding site of N-methyl-D-aspartate (NMDA) receptors, enhanced NMDA receptor activa...

متن کامل

The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration.

D-Serine is a physiological co-agonist of NMDARs (N-methyl-D-aspartate receptors) required for neurotransmission, synaptic plasticity and neurotoxicity. There is no consensus, however, on the relative roles of neurons and astrocytes in D-serine signalling. The effects of D-serine had been attributed to its role as a gliotransmitter specifically produced and released by astrocytes. In contrast, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015